S-duality in Hyperkähler Hodge Theory

نویسنده

  • Tamás Hausel
چکیده

Here we survey questions and results on the Hodge theory of hyperkähler quotients, motivated by certain S-duality considerations in string theory. The problems include L2 harmonic forms, Betti numbers and mixed Hodge structures on the moduli spaces of Yang-Mills instantons on ALE gravitational instantons, magnetic monopoles on R3 and Higgs bundles on a Riemann surface. Several of these spaces and their hyperkähler metrics were constructed by Nigel Hitchin and his collaborators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subvarieties in non-compact hyperkähler manifolds

Let M be a hyperkähler manifold, not necessarily compact, and S ∼= CP 1 the set of complex structures induced by the quaternionic action. Trianalytic subvariety of M is a subvariety which is complex analytic with respect to all I ∈ CP . We show that for all I ∈ S outside of a countable set, all compact complex subvarieties Z ⊂ (M, I) are trianalytic. For M compact, this result was proven in [V1...

متن کامل

Mirror symmetry and Langlands duality in the non-Abelian Hodge theory of a curve

This is a survey of results and conjectures on mirror symmetry phenomena in the nonAbelian Hodge theory of a curve. We start with the conjecture of Hausel–Thaddeus which claims that certain Hodge numbers of moduli spaces of flat SL(n, C) and PGL(n, C)connections on a smooth projective algebraic curve agree. We then change our point of view in the non-Abelian Hodge theory of the curve, and conce...

متن کامل

Supersymmetric duality in superloop space

In this paper we constructed superloop space duality for a four dimensional supersymmetric Yang–Mills theory with N = 1 supersymmetry. This duality reduces to the ordinary loop space duality for the ordinary Yang–Mills theory. It also reduces to the Hodge duality for an abelian gauge theory. Furthermore, the electric charges, which are the sources in the original theory, appear as monopoles in ...

متن کامل

The Local Theory of Elliptic Operators and the Hodge Theorem

In this paper, we develop the local theory of elliptic operators with a mind to proving the Hodge Decomposition Theorem. We then deduce a few of its corollaries including, for compact, oriented manifolds, Poincaré Duality and finite-dimensionality of the de Rham cohomology groups.

متن کامل

A field-theoretic model for Hodge theory

We demonstrate that the four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theory presents a tractable field theoretical model for the Hodge theory where the well-defined symmetry transformations correspond to the de Rham cohomological operators of differential geometry. The conserved charges, corresponding to the above continuous symmetry transformations, obey an algebra that is reminisce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008